Brain--Tumor Interaction Biophysical Models for Medical Image Registration
نویسندگان
چکیده
State-of-the art algorithms for deformable image registration are based on the minimization of an image similarity functional that is regularized by adding a penalty term on the deformation map. The penalty function typically represents a smoothness regularization. In this article, we use a constrained optimization formulation in which the image similarity functional is coupled to a biophysical model. This formulation is pertinent when the data have been generated by imaging tissue that undergoes deformations due to an actual biophysical phenomenon. Such is the case of coregistering tumor-bearing brain images from the same individual. We present an approximate model that couples tumor growth with the mechanical deformations of the surrounding brain tissue. We consider primary brain tumors—in particular, gliomas. Glioma growth is modeled by a reaction-advection-diffusion PDE, with a two-way coupling with the underlying tissue elastic deformation. Tumor bulk, infiltration, and subsequent mass effects are not regarded separately but are captured by the model itself in the course of its evolution. Our formulation allows for updating the tumor diffusion coefficient following structural displacements caused by tumor growth/infiltration. Our forward problem implementation builds on the PETSc library of Argonne National Laboratory. Our reformulation results in a very small parameter space, and we use the derivative-free optimization library APPSPACK of Sandia National Laboratories. We test the forward model and the optimization framework by using landmark-based similarity functions and by applying it to brain tumor data from clinical and animal studies. State-of-the-art registration algorithms fail in such problems due to excessive deformations. We compare our results with previous work in our group, and we observed up to 50% improvement in landmark deformation prediction. We present preliminary validation results in which we were able to reconstruct deformation fields using four degrees of freedom. Our study demonstrates the validity of our formulation and points to the need for richer datasets and fast optimization algorithms.
منابع مشابه
Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملCoupling Brain-Tumor Biophysical Models and Diffeomorphic Image Registration
We present the SIBIA (Scalable Integrated Biophysics-based Image Analysis) framework for joint image registration and biophysical inversion and we apply it to analyse MR images of glioblastomas (primary brain tumors). Given the segmentation of a normal brain MRI and the segmentation of a cancer patient MRI, we wish to determine tumor growth parameters and a registration map so that if we “grow ...
متن کاملSurface reconstruction of detect contours for medical image registration purpose
Although, most of the abnormal structures of human brain do not alter the shape of outer envelope of brain (surface), some abnormalities can deform the surface extensively. However, this may be a major problem in a surface-based registration technique, since two nearly identical surfaces are required for surface fitting process. A type of verification known as the circularity check for th...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملNonlinear Intra-Modality Registration of Medical Volume Data
The research interest in nonlinear image registration for medical intra-modality applications is a topic of constantly growing interest in the medical image analysis community. Areas of application include fusion of anatomical and functional data by angiography techniques, development of physiologic models of dynamic processes, investigation of organ/tumor growth or motion compensation in surge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008